Foraminifera and Cercozoa share a common origin according to RNA polymerase II phylogenies.
نویسندگان
چکیده
Phylogenetic analysis of small and large subunits of rDNA genes suggested that Foraminifera originated early in the evolution of eukaryotes, preceding the origin of other rhizopodial protists. This view was recently challenged by the analysis of actin and ubiquitin protein sequences, which revealed a close relationship between Foraminifera and Cercozoa, an assemblage of various filose amoebae and amoeboflagellates that branch in the so-called crown of the SSU rDNA tree of eukaryotes. To further test this hypothesis, we sequenced a fragment of the largest subunit of the RNA polymerase II (RPB1) from five foraminiferans, two cercozoans and the testate filosean Gromia oviformis. Analysis of our data confirms a close relationship between Foraminifera and Cercozoa and points to Gromia as the closest relative of Foraminifera.
منابع مشابه
Actin and ubiquitin protein sequences support a cercozoan/foraminiferan ancestry for the plasmodiophorid plant pathogens.
The plasmodiophorids are a group of eukaryotic intracellular parasites that cause disease in a variety of economically significant crops. Plasmodiophorids have traditionally been considered fungi but have more recently been suggested to be members of the Cercozoa, a morphologically diverse group of amoeboid, flagellate, and amoeboflagellate protists. The recognition that Cercozoa constitute a m...
متن کاملGymnophrys cometa and Lecythium sp. are Core Cercozoa: Evolutionary Implications
Recent phylogenetic analyses based on different molecular markers have revealed the existence of the Cercozoa, a group of protists including such morphologically diverse taxa as the cercomonad flagellates, the euglyphid testate filose amoebae, the chloroplastbearing chlorarachniophytes, and the plasmodiophorid plant pathogens. Molecular data also indicate a close relationship between Cercozoa a...
متن کاملForaminifera and Cercozoa are related in actin phylogeny: two orphans find a home?
In recent years, the increased sampling of protein-coding genes from diverse eukaryotes has revealed that many aspects of each gene tree are at odds with other phylogenies. This has led to the belief that each gene tree has unique strengths and weaknesses, suggesting that an accurate picture of eukaryotic relationships will be achieved only through comparative phylogeny using several different ...
متن کاملRadiolaria Divided into Polycystina and Spasmaria in Combined 18S and 28S rDNA Phylogeny
Radiolarians are marine planktonic protists that belong to the eukaryote supergroup Rhizaria together with Foraminifera and Cercozoa. Radiolaria has traditionally been divided into four main groups based on morphological characters; i.e. Polycystina, Acantharia, Nassellaria and Phaeodaria. But recent 18S rDNA phylogenies have shown that Phaeodaria belongs within Cerocozoa, and that the previous...
متن کاملSingle Cell Transcriptomics, Mega-Phylogeny, and the Genetic Basis of Morphological Innovations in Rhizaria
The innovation of the eukaryote cytoskeleton enabled phagocytosis, intracellular transport, and cytokinesis, and is largely responsible for the diversity of morphologies among eukaryotes. Still, the relationship between phenotypic innovations in the cytoskeleton and their underlying genotype is poorly understood. To explore the genetic mechanism of morphological evolution of the eukaryotic cyto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International journal of systematic and evolutionary microbiology
دوره 53 Pt 6 شماره
صفحات -
تاریخ انتشار 2003